
Computer Science 294 Lecture 8 Notes

Daniel Raban

February 9, 2023

1 Analysis of the Goldreich-Levin Algorithm and Learning
Juntas

1.1 Description and analysis of the Goldreich-Levin algorithm

Last time we introduced the Goldreich-Levin algorithm, an efficient randomized algorithm
that, given θ and query access to f : {±1}n → {±1}, outputs with high probability a list
L such that for all S,

|f̂(S)| ≥ θ =⇒ S ∈ L, S ∈ L =⇒ |f̂(S)| ≥ θ/2.

This lets us find the Fourier coefficients with most of the Fourier mass.
Here is more convenient notation for the proof: We will represent sets as binary vectors.

The set S ⊆ [n] corresponds to α ∈ {0, 1}n by

αi =

{
1 if i ∈ S
0 otherwise

for i = 1, . . . , n. For example, if n = 6 and S = {1.3.4}, then α = (1, 0, 1, 1, 0, 0). With
this notation,

f(x) =
∑

α∈{0,1}n
f̂(α)χα(x), χα(x) =

∏
i:αi=1

xi.

Recall that Parseval’s identity gives
∑

α∈{0,1}n f̂(α)2 = 1. We want to find all α with

f̂(α)2 ≥ θ2. How many are there? The proof idea is a divide and conquer strategy. We will
start with the root, containing all α ∈ {0, 1}n, so

∑
α f̂(α)2 = 1. Then we partition these

coefficients according to their first bit and calculate the sum of the squared coefficients
within each bucket. Then we partition these buckets further according to their second bit.

1

We won’t look at the entire binary tree, though. Suppose that for any k ∈ {0, 1, . . . , n}
and any β ∈ {0, 1}k, we can calculate

∑
α:α starts with β f̂(α)2. Then, whenever this sum is

≥ θ2/2, we expand node β to its two children β ◦ 0 and β ◦ 1. Otherweise, we prune the
tree at this leaf.

First note that every α such that |f̂(α)| ≥ θ would survive and be one of the leaves.
The second observation is that for any layer of this tree, the number of surviving nodes
per layer is at most 2/θ2 by Parseval’s identity. This tells us that the size of the tree will
be O(n/θ2), which is linear rather than exponential in n.

For β ∈ {0, 1}k, how do we estimate
∑

α:α starts with β f̂(α)2? It would be nice to have

a function gβ : {±1}n−k → {±1} with

gβ(z) =
∑

γ∈{0,1}n−k
f̂(β ◦ γ)χγ(z)

because
EZ∼{±1}n−k [gβ(Z)2] =

∑
α∈{0,1}n−k

f̂(β ◦ γ)2.

Lets look at f as a function of x1, x2, . . . , xk and xk+1, . . . , xn. Let’s relabel these as
y1, y2, . . . , yk and z1, . . . , zn−k.

2

We can write
f(x) =

∑
α∈{0,1}n

f̂(α)
∏
i:αi=1

xi,

which we now express as

f(y, z) =
∑

α∈{0,1}n
f̂(α)

∏
i:αi=1,i≤k

yi
∏

i:αi=1,i>k

zi−k

=
∑

β′∈{0,1}k,γ∈{0,1}n−k
f̂(β′ ◦ γ)χβ′(y)χγ(z)

Look at β = 0k, for example. Then

g0(z) = EY∼{±1}k [f(Y, z)]

=
∑

β′∈{0,1}k,γ∈{0,1}n−k
f̂(β′ ◦ γ)EY∼{±1}k [χβ′(Y)]︸ ︷︷ ︸

=δ
β′=0k

χγ(z)

=
∑

γ∈{0,1}n−k
f̂(0k ◦ γ)χγ(z).

More generally,

gβ(z) = EY∼{±1}k [f(Y, z)χβ(y)]

=
∑

β′∈{0,1}k,γ∈{0,1}n−k
f̂(β′ ◦ γ)EY∼{±1}k [χβ′(Y)χβ(Y)]︸ ︷︷ ︸

=〈χβ ,χβ′ 〉

χγ(z)

=
∑

γ∈{0,1}n−k
f̂(β ◦ γ)χγ(z).

Recall that we want to estimate EZ∼{±1}n−k [gβ(Z)2] =
∑

γ∈{0,1}n−k f̂(β ◦ γ)2. How do
we estimate this when we have query access to f? We have

EZ [gβ(Z)2] = EZ [(EY [f(Y, Z)χβ(Y)])2]

3

= EZ,Y,Y ′ [f(Y,Z)χβ(Y)f(Y ′, Z)χβ(Y ′)]

This is the expected value of a {±1}-valued random variable, so it can be estimated with
probability 1 − δ up to accuracy ε using m = O(log(1/δ)/ε2) queries. Note that we need
to be able to query f to make sure we have the values of f at two points which have the
same last n− k bits.

Here is the overall Goldreich-Levin algorithm:

1. For k = 0, 1, . . . , n,

(a) For every alive β ∈ {0, 1}k, estimate with probability ≥ 1 − δ the quantity∑
γ f̂(β ◦ γ)2 up to accuracy ε = θ2/4. If this quantity is smaller than θ2/2,

prune. Otherwise, add β ◦ 0 and β ◦ 1 to the queue.

(b) If more than 8/θ2 strings are in the queue, abort.

2. Output the queue.

Here is a more formal proof that the algorithm works.

Proof. Let {Ei}ni=1 be the events where all estimates in the i-th iteration were ε-accurate.
If E1, . . . , En all happen, then we did not abort, since for every β ∈ {0, 1}k in the k-th
iteration that was not pruned had∑

γ

f̂(β ◦ γ)2 ≥ θ2/2− θ2/4 = θ2/4.

By Parseval’s identity, at most 4/θ2 leaves are not pruned, and each of these leaves has
two children. By a union bound,

P(Ei | E1, . . . , Ei=1) ≥ 1− δ 8

θ2
,

so
P(E1, . . . , En) ≥ 1− δ8/θ2 · n.

This has runtime poly(n, 1/θ, log(1/δ)).

1.2 PAC learning for k-juntas

Let’s return to PAC learning, this time for learning k-juntas. Recall that f : {±1}n → {±1}
is a k-junta if it depends only on k of the coordinates, i.e. there exists a g : {±1}n → {±1}
and coordinates i1, i2, . . . , ik ∈ [n] such that f(x) = g(xi1 , xi2 , . . . , xik) for all x.

Learning juntas in the query model is relatively easy, since we can just flip one co-
ordinate to see if that coordinate is relevant. So we will focus on learning from random
labeled examples. The naive algorithm is to check by brute force, which takes roughly

4

nk poly(n, 2k) time, where the nk is an upper bound for
(
n
k

)
. We will follow an idea by

Mossel, O’Donnell, and Servedio.
The first claim is that “finding one relevant variable is enough.” Suppose given a k-

junta f , you can find a relevant variable in time T (n, k). Then you can find all relevant
coordinates in time T (n, k)2k. The idea is to recurse. After finding 1 coordinate xi. For
b ∈ {±1}, go over all examples x : xi = b and find the relevant coordinates there recursively.
This gives a runtime

T (n, k) + 2T (n, k − 1) + 4T (n, k − 2) + · · · ≤ 2kT (n, k).

Proposition 1.1. If f is a k-junta, then any Fourier coefficient is f̂(S) = integer/2k.

Proof. The key point is that g has the same Fourier coefficients as f .

ĝ(T) = EX∈{±1}k [g(X)χT (X)]

=
1

2k

∑
x∈{±1}k

g(x)χY (x)

︸ ︷︷ ︸
integer

.

We can thus use the following low degree algorithm:

For i = 1, 2, 3, . . . ,

For all sets S ⊆ [n] of size i,

Estimate f̂(S) up to accuracy 1
4 ·

1
2k

to get f̃(S).

If |f̃(S)| ≥ 1
2 ·

1
2k

, return S.

The runtime is ≈ nt, where t is the smallest number such that there exists an s : |s| = t
and f̂(S) 6= 0. The worst case fo the low degree algorithm is

f(x) = PARITYk(xi1 , . . . , xik),

(ignoring constant functions). Can we handle the worst case better?
Over F2, this function is

f(x) = xi1 + · · ·+ xik (mod 2)

=
n∑
i=1

αixi (mod 2),

5

where αi1 = αi2 = · · ·αik = 1 and all the rest are 0. Our goal is to find α, given random
examples (x(1), f(x(1))), . . . , (x(m), f(x(m))). We can solve this system of linear equations
by Gaussian elimination: 

- x(1) −
− x(2) −

...

− x(m) −



α1

α2

...
αn

 =


f(x(1))

f(x(2))
...

f(x(m))


When m = O(n), with high probability, this is a linear system with full rank. This
guarantees a unique solution. This has runtime nω, where 2 ≤ ω ≤ 2.372 is the matrix
multiplication exponent.

Let’s generailze this idea: Parity functions have degree 1 over F2. What about functions
with degree 2?

f(x) =
∑
i<j

αi,jxixj +

n∑
i=1

αixi + α0 · 1.


1 x

(1)
1 x

(1)
2 · · · x

(1)
n x

(1)
1 x

(1)
2 x

(1)
1 x

(1)
3 · · ·


︸ ︷︷ ︸

1+n+(n2) columns



α0

α1

...
αn
α1,2

α1,3

...
αn−1,n


=


f(x(1))

f(x(2))
...

f(x(m))



This matrix has 1 + n+
(
n
2

)
columns, and solving this system of linear equations takes

time (n2)ω.
More generally, for functions with degree d,

f(x) =
∑

S⊆[n],|S|≤d

αS
∏
i∈S

xi (mod 2).


1 x

(1)
1 x

(1)
2 · · · x

(1)
n x

(1)
1 x

(1)
2 x

(1)
1 x

(1)
3 · · ·


︸ ︷︷ ︸

1+n+(n2)+···+(nd) columns



α∅
α{1}
α{2}
...
αS
...


=


f(x(1))

f(x(2))
...

f(x(m))



6

This matrix has 1 + n +
(
n
2

)
+ · · · +

(
n
d

)
columns, and solving this system of linear

equations takes time (nd)ω.
Let’s compare these two algorithms:

• Low degree algorithm: Runs in time ≈ nt if there exists an S such that 1 ≤ |S| ≤ t
and f̂(S) 6= 0.

• Gaussian elimination: Runs in time ≈ ndω if f has degree ≤ d as a multilinear
polynomial over F2.

The main observation of Mossel, O’Donnell, and Servedio is that for any k-junta, one
of these algorithms runs much faster than nk. If for all S such that |S| < t, f̂(S) = 0, then
degF2

(f) ≤ k − r. Pick t = ω
ω+1 · k ≈ 0.7k to get runtime nt + n(k−t)ω ≈ nω/(ω+1)·k. The

proof of this observation will be given as a guided exercise in homework 3.
In 2012, Gregory Valiant1 showed that you can speed up the low degree algorithm faster

than nt.

1Gregory Valiant is actually the son of Leslie Valiant who wrote the original PAC learning paper!

7

	Analysis of the Goldreich-Levin Algorithm and Learning Juntas
	Description and analysis of the Goldreich-Levin algorithm
	PAC learning for k-juntas

